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We propose a scheme for coherent rotation of the valley isospin of a single electron confined in a carbon

nanotube quantum dot. The scheme exploits the ubiquitous atomic disorder of the nanotube crystal lattice,

which induces time-dependent valley mixing as the confined electron is pushed back and forth along the

nanotube axis by an applied ac electric field. Using experimentally determined values for the disorder

strength we estimate that valley Rabi oscillations with a period on the nanosecond time scale are feasible.

The valley resonance effect can be detected in the electric current through a double quantum dot in the

single-electron transport regime.
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Introduction.—The conduction and valence bands of
graphene and carbon nanotubes (CNTs) form two valleys
as the bands approach each other at two nonequivalent
points (K and K0) of the Brillouin zone [1]. This twofold
degeneracy of the electronic spectrum implies that the
valley degree of freedom of an electron can be regarded
as one bit of information, in analogy with the electron spin
[2]. To evaluate the potential of encoding information in
the valley degree of freedom, it is necessary to explore the
mechanisms which could provide control over the valley
state, as well as those leading to the loss of information.

Recent proposals suggest the use of valley-polarized
edge states of graphene nanoribbons in a valley filter
device [2], and magnetic field sweeps for valley control
in a graphene Aharonov-Bohm ring [3]. However, valley
mixing due to edge irregularities of nanostructured gra-
phene might pose a challenge towards the realization of
these ideas. This motivates the study of valley physics in
CNTs, which have a rolled-up and therefore edge-free
geometry. In fact, ultraclean CNT quantum dots (QDs)
have been fabricated recently [4–6] and the fourfold
(spin and valley) quasidegeneracy of the QD energy levels
as well as very weak disorder have been experimentally
confirmed [4,5]. These devices could enable spin control
via spin-orbit interaction (SOI) [7] and manipulation of a
combined spin-valley qubit (the ‘‘Kramers qubit’’) utiliz-
ing a magnetic field, valley mixing, and bends in a CNT
[8]. A necessary condition for QD confinement is that the
band gap, set by the chirality of the CNT, should signifi-
cantly exceed the typical QD level spacing (� 1 meV).

In this work we propose a scheme for coherent control of
the valley isospin of a single electron, which is confined in
a QD in a straight CNT at zero magnetic field. The effect,
which we name electron valley resonance (EVR) in anal-
ogy to electron spin resonance (ESR), relies on short-range
atomic disorder (substitutionals, adatoms, vacancies) on
the CNT. Disorder induces time-dependent valley mixing
as the confined electron is pushed back and forth along the

CNT by an applied oscillating (ac) electric field (Fig. 1),
which in turn induces Rabi oscillations between the two
valley states. The ac electric field can be induced by
applying an ac voltage component on one of the confining
electrodes, as demonstrated in single-spin control experi-
ments in GaAs QDs [9,10]. The EVR effect is one of the
rare examples when disorder can be harnessed—in this
case, to mediate rotations of the valley isospin of an
electron.
Using a microscopic model [11,12] of disorder-induced

valley mixing, we map the valley dynamics of the oscillat-
ing electron to the two-level ESR problem. A statistical
analysis of disorder configurations shows that the ratio
between typical energy scales of the ac and static valley
mixing is Z=L, where Z is the displacement amplitude of
the electron and 2L is the width of its wave function [see
Eq. (3)]. As the static valley-mixing energy is measurable
[4,5], our finding can be used to estimate the ac component
and hence the Rabi frequency. For a numerical example

FIG. 1 (color online). Schematic of the valley resonance setup.
(a) Two gate electrodes close to the CNT confine an electron to
the QD region. (b) The confinement potential VðzÞ is modulated
in time by an ac voltage on the left gate. (c) The modulation of
the confinement potential is followed by a displacement of the
electron density nðzÞ. The interplay of this driven motion and
disorder induces ac valley mixing leading to the valley resonance
effect.
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(see below) using data from [4], with Z ¼ 2 nm and
L ¼ 50 nm we find that the time needed for a half Rabi
cycle is � 1:6 ns. This time scale is 2 orders of magnitude
shorter than single-spin-flip times measured recently
[9,10,13], which reveals a strong potential of using the
valley isospin in information processing schemes. We also
describe a setup that could be used to detect the EVR effect
via a measurement of the electric current through a CNT
double QD (DQD).

Theory of EVR.—To model the electronic states, we use
the envelope function approximation and coordinates as in
Fig. 1. The Hamiltonian includes (i) the kinetic energy [11]
Hkin ¼ vFð�3�1px þ �2pzÞ with Fermi velocity vF,
circumferential (axial) electron momentum px (pz), and
�i (�i) being Pauli matrices acting in sublattice (valley)
space, (ii) curvature-enhanced SOI [4,14–16] Hso ¼
�3szð�0 þ �1�1Þ with axial spin component sz and
chirality-dependent on-site (off-site) SOI matrix element
�0 (�1), (iii) QD confinement potential V0ðzÞ, and
(iv) disorder induced by atomic defects [11] which ran-
domize the on-site energies on the crystal lattice,

HdisðrÞ¼�cell

X
l

X
�¼A;B

��½�0þ�rð’l�Þ�Ul��ðr-rl�Þ; (1)

where Ul� is the on-site energy on site � 2 ðA; BÞ �
ðþ;�Þ in unit cell l. Here �cell is the area of the unit cell
of the graphene lattice, �A;B ¼ ð�0 � �3Þ=2, �rð’Þ ¼
cos’�1 þ sin’�2, ’l� ¼ �ð2K � rl� � �Þ þ ��;B2�=3,
� is the chiral angle of the CNT, rl� is the position of the
lattice site l�, andK is the vector pointing to theK point of
the Brillouin zone. The presence of the off-diagonal valley
operator �r inHdis reflects the fact that short-range disorder
allows for large momentum transfer upon scattering, in-
cluding intervalley (K $ K0) transitions. Our valley rota-
tion scheme relies on this K-K0 coupling.

EVR is induced by pushing the electron back and forth
along the z axis by an ac voltage on one of the gates
(Fig. 1). We model this time-dependent displacement
with the confinement potential Vðz; tÞ ¼ V0ðz� Z sin!tÞ
with the ac frequency !=2�. To map the system to a two-
level ESR problem, we first transform the complete
Hamiltonian into the comoving reference frame by per-

forming the unitary transformation UðtÞ ¼ eiZ sinð!tÞpz=@,
which leaves Hkin and Hso invariant, but renders the
confinement potential time independent Vðz; tÞ � V0ðzÞ
and the disorder term time dependent HdisðrÞ �
Hdisðx; zþ Z sin!tÞ. The additional term i@ _UðtÞU�1ðtÞ
can be neglected as it does not induce transitions within
the ground state QD level.

Next, we restrict our consideration to the fourfold-
degenerate (spin and valley) QD ground state. For our
purposes, we can estimate the corresponding eigenfunc-
tions of Hkin þ V0ðzÞ as Gaussians, having equal weight

on the two sublattices: �K;sðx; zÞ �jKi�s ¼ eiqxffiffiffiffiffiffiffi
2�R

p ðGLðzÞ;
GLðzÞ; 0; 0Þ�s, and �K0;sðx; zÞ �jK0i�s ¼ e�iqxffiffiffiffiffiffiffi

2�R
p ð0; 0;

GLðzÞ; GLðzÞÞ�s, with spinors �s having spin projection

s 2 ð"; #Þ � ðþ;�Þ along the z axis, circumferential wave

number q > 0, CNT radius R, and GLðzÞ ¼ e�z2=2L2

�1=4
ffiffiffiffiffi
2L

p .

Projecting Hso to this fourfold degenerate subspace y
ields �Hso ¼ 1

2 �SOszðjK0ihK0 j � jKihK jÞ, where �SO ¼
2ð�0 þ�1Þ; experimentally reported values [4,5,17] of
�SO are in the range 0.17–2.5 meV. The form of �Hso

implies that SOI induces an energy splitting �SO between
two valley states with equal spin. Therefore, as in the case
of ESR in CNT QDs [7], no magnetic field is needed for
EVR. Henceforth, we consider small displacements
Z=L � 1. By projecting Hdis to the four-dimensional sub-
space of interest, we find

�H dis ¼ ðbei� þ bace
i�ac sin!tÞ j K0ihK j þH:c:; (2)

where valley-diagonal terms are omitted. The real quanti-
ties b, �, bac and �ac describe disorder-induced static and
ac valley mixing and can be expressed in terms of Ul� and
�v;s. Randomness of the disorder configuration Ul� im-

plies the randomness of those quantities as well. Assuming
a homogeneous and uncorrelated distribution of the atomic
defects hUl�Ul0�0 i ¼ hU2

l�i�l�;l0�0 , with zero average

hUl�i ¼ 0, we find hbi ¼ hbaci ¼ 0 and

hb2aci ¼
�
Z

L

�
2hb2i ¼

�
Z

L

�
2 1

4
ffiffiffi
2

p
�3=2

�cell

RL
hU2

l�i: (3)

Equations (2) and (3) are the central results of this work.
The ac valley-mixing term / bac in Eq. (2), induced by the
simultaneous presence of the ac electric field and atomic
disorder, allows for coherent rotations of the valley isospin
similarly to a transverse magnetic field in ESR [18].
Furthermore, using Eq. (3) we can estimate the correspond-
ing Rabi frequency from a measurement of the static
valley-mixing matrix element b. For example, in [4]
�SO ¼ 370 �eV and �KK0 ¼ 65 �eV were found. Iden-

tifying �KK0 with 2
ffiffiffiffiffiffiffiffiffihb2ip

, and taking L ¼ 50 nm and
Z ¼ 2 nm, from Eq. (3) we find an estimate for the
strength of the ac valley-mixing term in this sample asffiffiffiffiffiffiffiffiffiffihb2aci
p ¼ 1:3 �eV. This value translates to a �@=

ffiffiffiffiffiffiffiffiffiffihb2aci
p �

1:6 ns long half Rabi cycle at resonant driving @! ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

SO þ 4b2
q

.

Detection.—We now describe a setup where EVR could
be detected (Fig. 2). A DQD between a source and a drain
lead is tuned such (see below for details) that during
the single-electron transport process the electron can be
trapped in a specific valley state in the left QD. (jKL; 0i in
Fig. 2). The valley state of a trapped electron is changed
due to the EVR mechanism when an ac electric field is
applied to the left QD. This allows the particle to exit via
the ground state of the right QD; thus, EVR is detected via
the measurement of the electric current through the DQD.
Since this method is based on single-electron transport,
it is unaffected by strong correlations, unlike the Pauli
blockade effect [5,12,19,20].
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To describe this transport process, from now on
we consider only spin- " electrons; hence the SOI
Hamiltonian simplifies to �Hso ¼ 1

2 �SOðjK0ihK0 j �
jKihK jÞ. The description of the spin- # electrons is com-
pletely analogous. As shown in Fig. 2, the levels in the
DQD are tuned by gates so that the higher-lying level in the
left QD is aligned with the lower-lying level in the right
QD. We consider electron transport via the ð0; 0Þ !
ð1; 0Þ ! ð0; 1Þ ! ð0; 0Þ cycle, where (n, m) refers to the
configuration with n (m) electrons in the left (right) QD.
Interdot tunneling is assumed to be spin and valley con-
serving; therefore, the static Hamiltonian of an electron
in the DQD is

HDQD ¼
� �SO

2 bLe
�i�L t 0

bLe
i�L

�SO

2 0 t

t 0 � �SO

2 þ 	 bRe
�i�R

0 t bRe
i�R �SO

2 þ 	

0
BBBB@

1
CCCCA;

(4)

where we use the basis jK; 0i, jK0; 0i, j0; Ki, j0; K0i, and L,
R ¼ 0, K, K0 in jL; Ri refer to the occupation and valley
state in the left and right QDs. The left-right energy detun-
ing, needed for the level alignment described above, is

	 ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

SO þ 4b2L

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

SO þ 4b2R

q
Þ=2. We assume bL;R �

�SO (as found in recent experiments [4,5]), and t � �SO

(tunability of the interdot tunneling has been demonstrated
in CNT DQDs [21]). A crucial point for our detection
scheme is that the electron interacts with a different set
of impurities in the two QDs, and therefore bL and �L are
in general different from bR and �R. Together with the
condition bL;R � �SO, this implies that the higher-lying

state in the left QD jK0
Li has a small K component, the

lower-lying state in the right QD jKRi has a small K0
component, and jK0

Li is typically not orthogonal to jKRi.
This leads to a finite tunneling matrix element �ei�� ¼
thKRjK0

Li between the two aligned levels jK0
L; 0i and

j0; KRi. This matrix element is required for the EVR
detection scheme we outline below.

The level structure shown in Fig. 2 results in a blockade
effect at a finite source-drain voltage bias. If the incoming
electron enters the QD in the higher-lying jK0

L; 0i state then
it can move through the DQD easily because of the

complete hybridization of jK0
L; 0i with j0; KRi. However,

the condition t � �SO ensures that hybridization of the
lower-lying state jKL; 0i with (0,1) states is small
(& t=�SO in amplitude); therefore an electron occupying
that state blocks transport as it exits the DQD slowly.
Assuming equal tunneling rates � at the source and drain,
from a transport model based on the secular approximation
(� � t, bL;R, �SO) of the Born-Markov master equation

we estimate that the current through the DQD without
ac driving is much smaller than e�, i.e., I0=e �
2�ðt=�SOÞ2 � �.
This transport blockade allows for detection of the EVR

effect. If an ac electric field is active in the left QD and
pushes back and forth the electron in the left dot, occupy-
ing the blocking lower-lying state jKL; 0i in Fig. 2, then it
undergoes a Rabi transition to the higher-lying jK0

L; 0i
state, which allows it to exit the DQD to the drain due to
the strong hybridization of jK0

L; 0i and j0; KRi. This pro-
cess is most effective around resonant driving, i.e., when

@! �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

SO þ 4b2L

q
. In fact, below we show that around

the resonance condition and an appropriate tuning of the
tunneling amplitude �, the current through the DQD ap-
proaches its maximal value 2e�=7.
To provide an analytical result for the ac-field-induced

current we neglect perturbative hybridization amplitudes
between (1,0) and (0,1) states which are & t=�SO. In this
simplified picture the higher-lying level j0; K0

Ri on the right
QD is not involved in the transport as it is not hybridized
with (1,0) states. After a transformation into the rotating
frame in the left QD and the counterrotating frame in the
right QD, and within the rotating wave approximation
(RWA), the dynamics in the remaining three-level system
can be described by

HRWA � � jKL;0ihKL;0 j
þ

�
bac
2

jK0
L;0ihKL;0 j þ� j0;KRihK0

L;0 j þH:c:

�

(5)

with the ac valley-mixing term / bac and the detuning

� ¼ @!�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

SO þ 4b2L

q
. The phases �ac and �� have

been eliminated by a specific choice of the basis. A small
term / bacb=�SO has been neglected in Eq. (5). The
leading-order (in �) analytical result for the current, ob-
tained from the Born-Markov master equation is

I

e�
¼ 2�2b2ac
4�4þ�2ð3b2ac�8�2Þþ4�4þ5�2b2acþb4ac

: (6)

Using Eq. (6), in Fig. 3 we plot the current as a function

of dimensionless detuning ~� ¼ �=bac for three different
values of the dimensionless tunneling amplitude ~� ¼
�=bac. The curves correspond to three different regimes.
(i) For ~� ¼ 6:0 the current shows two Lorentzian peaks as

the function of detuning, having width bac=
ffiffiffi
2

p
and maxi-

mal current e�=4 in the entire ~� 	 1 regime. In this

FIG. 2 (color online). Schematic of EVR detection. The
disorder-mediated ac valley mixing drives transitions between
the states on the left QD. Interdot tunneling between K0

L and KR

has the amplitude �ei�� ¼ thKR j K0
Li.
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situation, hybridization of jK0
L; 0i and j0; KRi results in a

‘‘bonding’’ and an ‘‘antibonding’’ state with energies 
�,
shown as dashed lines in the left diagram of the inset of
Fig. 3. The ac field can be resonant with only one of these
states (in the inset it is the bonding one), as the current peak
width is set by the Rabi energy bac, which is significantly
smaller than the peak separation 2� in this case. This
parameter regime seems to be suitable for EVR detection
as the resonant current is large, i.e., comparable to � (see,
however, estimate of the background current I0 below).
(ii) For ~� ¼ 0:7, the energy separation 2� between the two
peaks of regime (i) becomes comparable to the Rabi energy
bac, and therefore the two peaks merge into a single one.
These parameters are optimal for EVR detection as the
peak value of the current is 2e�=7, exceeding that in
regime (i). (iii) For ~� ¼ 0:2, the Rabi energy bac becomes
dominant over tunneling �. This implies that the minimal
energy distance between the two (1,0) states cannot drop
below bac, and the current is maximal if they hybridize
equally (/ �=bac) with j0; KRi (this maximal-current situ-
ation is shown in the right diagram of the inset of Fig. 3).
This ~� � 1 regime is less suitable for EVR detection as
the peak current is only a small fraction 2~�2� of the barrier
transparency �. The line shape is approximately a

Lorentzian for small detuning, with width bac=
ffiffiffi
5

p
. At large

source-drain bias, temperature-induced broadening of the
Fermi-Dirac distribution in the leads is not expected to
influence the line shapes.

To take a numerical example, we use again bac ¼
1:3 �eV, �SO ¼ 370 �eV, bL ¼ bR ¼ 32:5 �eV, �R �
�L ¼ �=3, which yields � � 0:075t. This implies that by
tuning t to 90:2 �eV, 10:5 �eV, and 3:0 �eV, one arrives
at the previously plotted and described situations (i), (ii),
and (iii), respectively. Furthermore, it is reasonable to
assume � ¼ 62:5 MHz, which translates to a measurable
current scale e� � 10 pA, and a level broadening of @� �
40 neV � bac; � in all cases. We also estimate the EVR
detection visibility by comparing the background current
I0 (see above), i.e., the current in the absence of the
ac electric field, to the current at resonant EVR driving.

In the cases (i), (ii), and (iii), I0 is estimated as 1.2 pA,
16 fA and 1 fA, respectively. For this example, we can
conclude that in cases (ii) and (iii) the background current
is much smaller than the EVR contribution due to the ac
electric field (� 1 pA from Fig. 3 and e� ¼ 10 pA), and
therefore EVR could indeed be detected in this
measurement.
Valley relaxation, e.g., due to valley mixing and phonon

emission, can affect the EVR. By including valley relaxa-
tion in our transport model, we found that the results in
Fig. 3 do not change significantly if the relaxation rate
is below bac=@ and �=@. EVR could also be detected
in pulsed-gated transport or charge sensing experiments
[5,9,10,13], which may allow for measuring the valley
decoherence time. The ideas described here for CNTs
could be generalized to other multivalley materials, such
as silicon.
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